募捐 9月15日2024 – 10月1日2024 关于筹款

Biochemistry of microbial degradation

Biochemistry of microbial degradation

Philip Morgan, Robert J. Watkinson (auth.), Colin Ratledge (eds.)
你有多喜欢这本书?
下载文件的质量如何?
下载该书,以评价其质量
下载文件的质量如何?

Life on the planet depends on microbial activity. The recycling of carbon, nitrogen, sulphur, oxygen, phosphate and all the other elements that constitute living matter are continuously in flux: microorganisms participate in key steps in these processes and without them life would cease within a few short years. The comparatively recent advent of man-made chemicals has now challenged the environment: where degradation does not occur, accumulation must perforce take place. Surprisingly though, even the most recalcitrant of molecules are gradually broken down and very few materials are truly impervious to microbial attack. Microorganisms, by their rapid growth rates, have the most rapid turn-over of their DNA of all living cells. Consequently they can evolve altered genes and therefore produce novel enzymes for handling "foreign" compounds - the xenobiotics - in a manner not seen with such effect in other organisms. Evolution, with the production of micro-organisms able to degrade molecules hitherto intractable to breakdown, is therefore a continuing event. Now, through the agency of genetic manipulation, it is possible to accelerate this process of natural evolution in a very directed manner. The time-scale before a new microorganism emerges that can utilize a recalcitrant molecule has now been considerably shortened by the application of well-understood genetic principles into microbiology. However, before these principles can be successfully used, it is essential that we understand the mechanism by which molecules are degraded, otherwise we shall not know where best to direct these efforts.

种类:
年:
1994
出版:
1
出版社:
Springer Netherlands
语言:
english
页:
590
ISBN 10:
9401116873
ISBN 13:
9789401116879
文件:
PDF, 14.34 MB
IPFS:
CID , CID Blake2b
english, 1994
线上阅读
正在转换
转换为 失败

关键词